Меню

Что такое спектр земли

Спектр солнечного излучения: описание, особенности и интересные факты

Солнце играет важную роль для нас на Земле. Оно обеспечивает планету и все, что на ней находится важными факторами, такими как свет и тепло. Но что такое солнечное излучение, спектр солнечного света, как все это влияет на нас и на глобальный климат в целом?

Что такое солнечная радиация?

Плохие мысли обычно приходят на ум, когда вы думаете о слове «радиация». Но солнечная радиация на самом деле очень хорошая вещь — это солнечный свет! Каждое живое существо на Земле зависит от него. Он необходим для выживания, согревает планету, обеспечивает питание для растений.

Солнечное излучение — это весь свет и энергия, которые исходят от солнца, и есть много различных его форм. В электромагнитном спектре различают различные типы световых волн, излучаемых солнцем. Они похожи на волны, которые вы видите в океане: они перемещаются вверх и вниз и из одного места в другое. Спектр солнечного изучения может иметь разную интенсивность. Различают ультрафиолетовое, видимое и инфракрасное излучение.

Свет — движущаяся энергия

Спектр солнечного излучения образно напоминает клавиатуру пианино. Один ее конец имеет низкие ноты, в то время как другой — высокие. То же самое относится и к электромагнитному спектру. Один конец имеет низкие частоты, а другой — высокие. Низкочастотные волны являются длинными в течение заданного периода времени. Это такие вещи, как радар, телевизор и радиоволны. Высокочастотные излучения — это высокоэнергетические волны с короткой длиной. Это означает, что длина самой волны очень коротка для данного периода времени. Это, например, гамма-лучи, рентгеновские и ультрафиолетовые лучи.

Вы можете думать об этом так: низкочастотные волны похожи на подъем на холм с постепенным поднятием, в то время как высокочастотные волны похожи на быстрый подъем на крутой, почти вертикальный холм. При этом высота каждого холма одинакова. Частота электромагнитной волны определяет, сколько энергии она несет. Электромагнитные волны, которые имеют большую длину и, следовательно, более низкие частоты, несут гораздо меньше энергии, чем с более короткими длинами и более высокими частотами.

Вот почему рентгеновские лучи и ультрафиолетовое излучение могут быть опасными. Они несут так много энергии, что, если попадают в ваше тело, могут повредить клетки и вызвать проблемы, такие как рак и изменение в ДНК. Такие вещи, как радио и инфракрасные волны, которые несут гораздо меньше энергии, на самом деле не оказывают на нас никакого влияния. Это хорошо, потому что вы, конечно, не хотите подвергать себя риску, просто включив стерео.

Видимый свет, который мы и другие животные можем видеть нашими глазами, расположен почти в середине спектра. Мы не видим никаких других волн, но это не значит, что их там нет. На самом деле, насекомые видят ультрафиолетовый свет, но не наш видимый. Цветы выглядят для них совсем по-другому, чем для нас, и это помогает им знать, какие растения посетить и от каких из них держаться подальше.

Источник всей энергии

Мы принимаем солнечный свет как должное, но так не обязано быть, потому что, по сути, вся энергия на Земле зависит от этой большой, яркой звезды в центре нашей Солнечной системы. И пока мы находимся в ней, мы должны также сказать спасибо нашей атмосфере, потому что она поглощает часть излучения, прежде чем оно достигнет нас. Это важный баланс: слишком много солнечного света, и на Земле становится жарко, слишком мало — и она начинает замерзать.

Проходя через атмосферу, спектр солнечного излучения у поверхности Земли дает энергию в разных формах. Для начала рассмотрим различные способы ее передачи:

  1. Проводимость (кондукция) — это когда энергия передается от прямого контакта. Когда вы обжигаете руку горячей сковородой, потому что забыли надеть прихватку, это проводимость. Посуда передает тепло вашей руке через прямой контакт. Кроме того, когда ваши ноги касаются холодной плитки в ванной утром, они переносят тепло на пол через прямой контакт — проводимость в действии.
  2. Рассеивание — это, когда энергия передается через токи в жидкости. Это также может быть и газ, но процесс в любом случае будет такой же. Когда жидкость нагрета, молекулы возбуждены, разрозненны и менее плотные, поэтому они стремятся вверх. Когда они остывают, снова падают вниз, создавая клеточный текущий путь.
  3. Радиация (излучение) — это, когда энергия передается в виде электромагнитных волн. Подумайте о том, как хорошо сидеть рядом с костром и чувствовать, как приветственное тепло излучается от него к вам — это радиация. Радиоволны, световые и тепловые волны могут путешествовать, перемещаясь из одного места в другое без помощи каких-либо материалов.
Читайте также:  Охватит всю планету земля

Основные спектры солнечного излучения

Солнце обладает разным излучением: от рентгеновских лучей до радиоволн. Солнечная энергия — это свет и тепло. Его состав:

Мы получаем солнечной энергии при интенсивности 1 киловатт на квадратный метр на уровне моря в течение многих часов в день. Около половины излучения находится в видимой коротковолновой части электромагнитного спектра. Другая половина — в ближней инфракрасной, и немного в ультрафиолетовом отделе спектра.

Ультрафиолетовое излучение

Именно ультрафиолетовое излучение в солнечном спектре имеет интенсивность большую, чем другие: до 300-400 нм. Часть этого излучения, которое не поглощается атмосферой, производит загар или солнечный ожог для людей, которые были в солнечном свете в течение длительных периодов времени. Ультрафиолетовое излучение в солнечном свете имеет как положительные, так и отрицательные последствия для здоровья. Он является основным источником витамина D.

Видимое излучение

Видимое излучение в солнечном спектре имеет интенсивность среднего уровня. Количественные оценки потока и вариации его спектрального распределения в видимом и ближнем инфракрасном диапазонах электромагнитного спектра представляют большой интерес при изучении солнечно-наземных воздействий. Диапазон от 380 до 780 нм виден невооруженным взглядом.

Причина в том, что основная часть энергии солнечной радиации сосредоточена в этом диапазоне и она определяет тепловое равновесие атмосферы Земли. Солнечный свет является ключевым фактором в процессе фотосинтеза, используемого растениями и другими автотрофными организмами для преобразования световой энергии в химическую, которая может быть использована в качестве топлива для организма.

Инфракрасное излучение

Инфракрасный спектр, который охватывает от 700 нм до 1 000 000 нм (1мм), содержит важную часть электромагнитного излучения, которое достигает Земли. Инфракрасное излучение в солнечном спектре имеет интенсивность трех видов. Ученые делят этот диапазон на 3 типа на основе длины волны:

Заключение

Многие животные (включая человека) имеют чувствительность в диапазоне от приблизительно 400-700 нм, и полезный спектр цветового зрения у человека, например, составляет примерно 450-650 нм. Помимо эффектов, которые возникают на закате и восходе солнца, спектральный состав изменяется, в первую очередь, по отношению к тому, как непосредственно солнечный свет попадает на землю.

Каждые две недели Солнце снабжает нашу планету таким количеством энергии, что ее хватает всем жителям на целый год. В связи с этим все чаще солнечное излучение рассматривают, как альтернативный источник энергии.

Источник

Спектр электромагнитного излучения

После появления уравнений Максвелла стало ясно, что они предсказывают существование неизвестного науке природного явления — поперечных электромагнитных волн, представляющих собой распространяющиеся в пространстве со скоростью света колебания взаимосвязанных электрического и магнитного поля. Сам Джеймс Кларк Максвелл первым и указал научному сообществу на это следствие из выведенной им системы уравнений. В этом преломлении скорость распространения электромагнитных волн в вакууме оказалась столь важной и фундаментальной вселенской константой, что ее обозначили отдельной буквой с в отличие от всех прочих скоростей, которые принято обозначать буквой v.

Сделав это открытие, Максвелл сразу же определил, что видимый свет является «всего лишь» разновидностью электромагнитных волн. К тому времени были известны длины световых волн видимой части спектра — от 400 нм (фиолетовые лучи) до 800 нм (красные лучи). (Нанометр — единица длины, равная одной миллиардной метра, которая в основном используется в атомной физике и физике лучей; 1 нм = 10 –9 м.) Всем цветам радуги соответствуют различные длины волн, лежащие в этих весьма узких пределах. Однако в уравнениях Максвелла не содержалось никаких ограничений на возможный диапазон длин электромагнитных волн. Когда стало ясно, что должны существовать электромагнитные волны самой разной длины, фактически сразу же было выдвинуто сравнение по поводу того, что человеческий глаз различает столь узкую полосу их длин и частот: человека уподобили слушателю симфонического концерта, слух которого способен улавливать только скрипичную партию, не различая всех остальных звуков.

Вскоре после предсказания Максвеллом существования электромагнитных волн других диапазонов спектра последовала серия открытий, подтвердивших его правоту. Первыми в 1888 году были открыты радиоволны — сделал это немецкий физик Генрих Герц (Heinrich Hertz, 1857–1894). Единственная разница между радиоволнами и светом состоит в том, что длина радиоволн может колебаться в диапазоне от нескольких дециметров до тысяч километров. Согласно теории Максвелла, причиной возникновения электромагнитных волн является ускоренное движение электрических зарядов. Колебания электронов под воздействием переменного электрического напряжения в антенне радиопередатчика создают электромагнитные волны, распространяющиеся в земной атмосфере. Все другие типы электромагнитных волн также возникают в результате различных видов ускоренного движения электрических зарядов.

Читайте также:  Как в древности называли землю русскую

Подобно световым волнам, радиоволны могут практически без потерь распространяться на большие расстояния в земной атмосфере, и это делает их полезнейшими носителями закодированной информации. Уже в начале 1894 года — всего через пять с небольшим лет после открытия радиоволн — итальянский инженер-физик Гульельмо Маркони (Guglielmo Marconi, 1874–1937) сконструировал первый работающий беспроволочный телеграф — прообраз современного радио, — за что в 1909 году был удостоен Нобелевской премии.

После того как было впервые экспериментально подтверждено предсказываемое уравнениями Максвелла существование электромагнитных волн за пределами видимого спектра, остальные ниши спектра заполнились весьма быстро. Сегодня открыты электромагнитные волны всех без исключения диапазонов, и практически все они находят широкое и полезное применение в науке и технике. Частоты волн и энергии соответствующих им квантов электромагнитного излучения (см. Постоянная Планка) возрастают с уменьшением длины волны. Совокупность всех электромагнитных волн образует так называемый сплошной спектр электромагнитного излучения. Он подразделяется на следующие диапазоны (в порядке увеличения частоты и уменьшения длины волн):

Радиоволны

Как уже отмечалось, радиоволны могут значительно различаться по длине — от нескольких сантиметров до сотен и даже тысяч километров, что сопоставимо с радиусом Земного шара (около 6400 км). Волны всех радиодиапазонов широко используются в технике — дециметровые и ультракороткие метровые волны применяются для телевещания и радиовещания в диапазоне ультракоротких волн с частотной модуляцией (УКВ/FM), обеспечивая высокое качество приема сигнала в пределах зоны прямого распространения волн. Радиоволны метрового и километрового диапазона применяются для радиовещания и радиосвязи на больших расстояниях с использованием амплитудной модуляции (АМ), которая, хотя и в ущерб качеству сигнала, обеспечивает его передачу на сколь угодно большие расстояния в пределах Земли благодаря отражению волн от ионосферы планеты. Впрочем, сегодня этот вид связи отходит в прошлое благодаря развитию спутниковой связи. Волны дециметрового диапазона не могут огибать земной горизонт подобно метровым волнам, что ограничивает зону приема областью прямого распространения, которая, в зависимости от высоты антенны и мощности передатчика, составляет от нескольких до нескольких десятков километров. И тут на помощь приходят спутниковые ретрансляторы, берущие на себя ту роль отражателей радиоволн, которую в отношении метровых волн играет ионосфера.

Микроволны

Микроволны и радиоволны диапазона сверхвысоких частот (СВЧ) имеют длину от 300 мм до 1 мм. Сантиметровые волны, подобно дециметровым и метровым радиоволнам, практически не поглощаются атмосферой и поэтому широко используются в спутниковой и сотовой связи и других телекоммуникационных системах. Размер типовой спутниковой тарелки как раз равен нескольким длинам таких волн.

Более короткие СВЧ-волны также находят множество применений в промышленности и в быту. Достаточно упомянуть про микроволновые печи, которыми сегодня оснащены и промышленные хлебопекарни, и домашние кухни. Действие микроволновой печи основано на быстром вращении электронов в устройстве, которое называется клистрон. В результате электроны излучают электромагнитные СВЧ-волны определенной частоты, при которой они легко поглощаются молекулами воды. Когда вы помещаете еду в микроволновую печь, молекулы воды, содержащиеся в еде, поглощают энергию микроволн, движутся быстрее и таким образом разогревают еду. Иными словами, в отличие от обычной духовки или печи, где еда разогревается снаружи, микроволновая печь разогревает ее изнутри.

Инфракрасные лучи

Эта часть электромагнитного спектра включает излучение с длиной волны от 1 миллиметра до восьми тысяч атомных диаметров (около 800 нм). Лучи этой части спектра человек ощущает непосредственно кожей — как тепло. Если вы протягиваете руку в направлении огня или раскаленного предмета и чувствуете жар, исходящий от него, вы воспринимаете как жар именно инфракрасное излучение. У некоторых животных (например, у норных гадюк) есть даже органы чувств, позволяющие им определять местонахождение теплокровной жертвы по инфракрасному излучению ее тела.

Поскольку большинство объектов на поверхности Земли излучает энергию в инфракрасном диапазоне волн, детекторы инфракрасного излучения играют немаловажную роль в современных технологиях обнаружения. Инфракрасные окуляры приборов ночного видения позволяют людям «видеть в темноте», и с их помощью можно обнаружить не только людей, но и технику, и сооружения, нагревшиеся за день и отдающие ночью свое тепло в окружающую среду в виде инфракрасных лучей. Детекторы инфракрасных лучей широко используются спасательными службами, например для обнаружения живых людей под завалами после землетрясений или иных стихийных бедствий и техногенных катастроф.

Читайте также:  Как оформить землю под оформленным жилым домом

Видимый свет

Как уже говорилось, длины электромагнитных волн видимого светового диапазона колеблются в пределах от восьми до четырех тысяч атомных диаметров (800–400 нм). Человеческий глаз представляет собой идеальный инструмент для регистрации и анализа электромагнитных волн этого диапазона. Это обусловлено двумя причинами. Во-первых, как отмечалось, волны видимой части спектра практически беспрепятственно распространяются в прозрачной для них атмосфере. Во-вторых, температура поверхности Солнца (около 5000°С) такова, что пик энергии солнечных лучей приходится именно на видимую часть спектра. Таким образом, наш главный источник энергии излучает огромное количество энергии именно в видимом световом диапазоне, а окружающая нас среда в значительной мере прозрачна для этого излучения. Неудивительно поэтому, что человеческий глаз в процессе эволюции сформировался таким образом, чтобы улавливать и распознавать именно эту часть спектра электромагнитных волн.

Хочу еще раз подчеркнуть, что ничего особенного с физической точки зрения в диапазоне видимых электромагнитных лучей нет. Он представляет собой всего лишь узкую полоску в широком спектре излучаемых волн (см. рисунок). Для нас он столь важен лишь постольку, поскольку человеческий мозг оснащен инструментом для выявления и анализа электромагнитных волн именно этой части спектра.

Ультрафиолетовые лучи

К ультрафиолетовым лучам относят электромагнитное излучение с длиной волны от нескольких тысяч до нескольких атомных диаметров (400–10 нм). В этой части спектра излучение начинает оказывать влияние на жизнедеятельность живых организмов. Мягкие ультрафиолетовые лучи в солнечном спектре (с длинами волн, приближающимися к видимой части спектра), например, вызывают в умеренных дозах загар, а в избыточных — тяжелые ожоги. Жесткий (коротковолновой) ультрафиолет губителен для биологических клеток и поэтому используется, в частности, в медицине для стерилизации хирургических инструментов и медицинского оборудования, убивая все микроорганизмы на их поверхности.

Всё живое на Земле защищено от губительного влияния жесткого ультрафиолетового излучения озоновым слоем земной атмосферы, поглощающим большую часть жестких ультрафиолетовых лучей в спектре солнечной радиации (см. Озоновая дыра). Если бы не этот естественный щит, жизнь на Земле едва ли бы вышла на сушу из вод Мирового океана. Однако, несмотря на защитный озоновый слой, какая-то часть жестких ультрафиолетовых лучей достигает поверхности Земли и способна вызвать рак кожи, особенно у людей, от рождения склонных к бледности и плохо загорающих на солнце.

Рентгеновские лучи

Излучение в диапазоне длин волн от нескольких атомных диаметров до нескольких сот диаметров атомного ядра называется рентгеновским. Рентгеновские лучи проникают сквозь мягкие ткани организма и поэтому незаменимы в медицинской диагностике. Как и в случае с радиоволнами временной разрыв между их открытием в 1895 году и началом практического применения, ознаменовавшимся получением в одной из парижских больниц первого рентгеновского снимка, составил считанные годы. (Интересно отметить, что парижские газеты того времени настолько увлеклись идеей, что рентгеновские лучи могут проникать сквозь одежду, что практически ничего не сообщали об уникальных возможностях их применения в медицине.)

Гамма-лучи

Самые короткие по длине волны и самые высокие по частоте и энергии лучи в электромагнитном спектре — это γ-лучи (гамма-лучи). Они состоят из фотонов сверхвысоких энергий и используются сегодня в онкологии для лечения раковых опухолей (а точнее, для умерщвления раковых клеток). Однако их влияние на живые клетки столь губительно, что при этом приходится соблюдать крайнюю осторожность, чтобы не причинить вреда окружающим здоровым тканям и органам.

В заключение важно еще раз подчеркнуть, что, хотя все описанные типы электромагнитного излучения проявляют себя внешне по-разному, по своей сути они являются близнецами. Все электромагнитные волны в любой части спектра представляют собой распространяющиеся в вакууме или среде поперечные колебания электрического и магнитного полей, все они распространяются в вакууме со скоростью света с и отличаются друг от друга лишь длиной волны и, как следствие, энергией, которую они переносят. Остается только добавить, что названные мною границы диапазонов носят достаточно условный характер (и в других книгах вам, вполне вероятно, попадутся несколько иные значения граничных длин волн). В частности, микроволновые излучения с большими длинами волн нередко и справедливо относятся к сверхвысокочастотному диапазону радиоволн. Отсутствуют четкие границы и между жестким ультрафиолетовым и мягким рентгеновским, а также между жестким рентгеновским и мягким гамма-излучением.

Источник