Меню

Формы размеры строение земли геология

Основы нефтегазового производства

Введение в геологию

1. Внутреннее строение Земли

Химический состав Земли

Химический состав Земли схож с составом других планет земной группы, например Венеры или Марса (см. рисунок 1).

В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см3.

О внутреннем строении Земли достоверных данных весьма мало. Рассмотрим рис. 2. Он изображает внутреннее строение Земли. Земля состоит из земной коры, мантии и ядра.

Рис. 1. Химический состав Земли

Ядро

Ядро расположено в центре Земли (см.рис 3), его радиус составляет около 3,5 тыс км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см3 (сравните: вода — 1 г/см3). Ядро предположительно состоит из сплавов железа и никеля.

Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.

Рис. 3. Строение Земли: ядро, мантия и земная кора

Мантия

Мантия — геосфера Земли, которая окружает ядро и составляет 83 % от объема нашей планеты (см. рис. 3). Нижняя ееграница располагается на глубине 2900 км. Мантия разделяется на менее плотную и пластичную верхнюю часть (800-900 км), из которой образуется магма (в переводе с греческого означает «густая мазь»; это расплавленное вещество земных недр — смесь химических соединений и элементов, в том числе газов, в особом полужидком состоянии); и кристаллическую нижнюю, тол- шиной около 2000 км.

Земная кора

Земная кора — внешняя оболочка литосферы (см. рис. 3). Ее плотность примерно в два раза меньше, чем средняя плотность Земли, — 3 г/см3.

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).

Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.

Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.

Состав и строение земной коры

По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры (см. рис. 5).

Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.

Рис. 4. Строение земной коры

Минерал — это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.

Рис. 6. Общий минеральный состав Земли

Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.

Осадочные горные породы — глина, известняк, мел, песчаник и др. — образовались путем осаждения веществ в водной среде и на суше. Они лежат пластами. Геологи называют их страницами истории Земли, так как но ним можно узнать о природных условиях, существовавших на нашей планете в давние времена.

Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).

Органогенные горные породы образуются в результате накопления останков животных и растений.

Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).

Таблица 1. Обломочные горные породы в зависимости от размеров обломков

Хемогенные горные породы формируются в результате осаждения из вод морей и озер растворенных в них веществ.

В толще земной коры из магмы образуются магматические горные породы (рис. 7), например гранит и базальт.

Осадочные и магматические породы при погружении на большие глубины под влиянием давления и высоких температур подвергаются значительным изменениям, превращаясь в метаморфические горные породы. Так, например, известняк превращается в мрамор, кварцевый песчаник — в кварцит.

В строении земной коры выделяют три слоя: осадочный, «гранитный», «базальтовый».

Осадочный слой (см. рис. 8) образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения. Например, каменный уголь -это продукт преобразования растений древних времен. Мощность осадочного слоя колеблется в широких пределах — от полного отсутствия в некоторых районах суши до 20-25 км в глубоких впадинах.

» alt=»» width=»480″ height=»316.9111969112″/>

Рис. 7. Классификация горных пород по происхождению

«Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.

«Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.

Мощность и вертикальная структура земной коры различны. Выделяют несколько типов земной коры (рис. 8). Согласно наиболее простой классификации различают океаническую и материковую земную кору.

Континентальная и океаническая кора различны по толщине. Так, максимальная толщина земной коры наблюдается под горными системами. Она составляет около 70 км. Под равнинами мощность земной коры составляет 30-40 км, а под океанами она наиболее тонкая — всего 5-10 км.

» alt=»» width=»480″ height=»441.41176470588″/>

Рис. 8. Типы земной коры: 1 — вода; 2- осадочный слой; 3 — переслаивание осадочных пород и базальтов; 4 — базальты и кристаллические ультраосновные породы; 5 — гранитно-метаморфический слой; 6 — гранулитово-базитовый слой; 7 — нормальная мантия; 8 — разуплотненная мантия

Различие континентальной и океанической земной коры по составу пород проявляется в том, что гранитный слой в океанической коре отсутствует. Да и базальтовый слой океанической коры весьма своеобразен. По составу пород он отличен от аналогичного слоя континентальной коры.

Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. Замещение континентальной коры океанической происходит в океане примерно на глубине 2450 м.

Рис. 9. Строение материковой и океанической земной коры

Выделяют и переходные типы земной коры — субокеаническую и субконтинентальную.

Субокеаническая кора расположена вдоль континентальных склонов и подножий, может встречаться в окраинных и средиземных морях. Она представляет собой континентальную кору мощностью до 15-20 км.

Субконтинентальная кора расположена, например, на вулканических островных дугах.

По материалам сейсмического зондирования — скорости прохождения сейсмических волн — мы получаем данные о глубинном строении земной коры. Так, Кольская сверхглубокая скважина, впервые позволившая увидеть образцы пород с глубины более 12 км, принесла много неожиданного.

Предполагалось, что на глубине 7 км должен начаться «базальтовый» слой. В действительности же он обнаружен не был, а среди горных пород преобладали гнейсы.

Изменение температуры земной коры с глубиной. Приповерхностный слой земной коры имеет температуру, определяемую солнечным теплом. Это гелиометрический слой (от греч. гелио — Солнце), испытывающий сезонные колебания температуры. Средняя его мощность — около 30 м.

Ниже расположен еще более тонкий слой, характерной чертой которого является постоянная температура, соответствующая среднегодовой температуре места наблюдений. Глубина этого слоя увеличивается в условиях континентального климата.

Еще глубже в земной коре выделяется геотермический слой, температура которого определяется внутренним теплом Земли и с глубиной возрастает.

Увеличение температуры происходит главным образом за счет распада радиоактивных элементов, входящих в состав горных пород, прежде всего радия и урана.

Величину нарастания температуры горных пород с глубиной называют геотермическим градиентом. Он колеблется в довольно широких пределах — от 0,1 до 0,01 °С/м — и зависит от состава горных пород, условий их залегания и ряда других факторов. Под океанами температура с глубиной нарастает быстрее, чем на континентах. В среднем с каждыми 100 м глубины становится теплее на 3 °С.

Величина, обратная геотермическому градиенту, называется геотермической ступенью. Она измеряется в м/°С.

Тепло земной коры — важный энергетический источник.

Часть земной коры, простирающаяся глубин, доступных для геологического изучения, образует недра Земли. Недра Земли требуют особой охраны и разумного использования.

Источник

ФОРМА, РАЗМЕРЫ И СТРОЕНИЕ ЗЕМЛИ

Основы геологии

Учебное пособие для студентов специальности

«Подземная разработка месторождений полезных ископаемых»

доктор геолого-минералогических наук И.И.Чайковский

кандидат технических наук Б.В.Титов

Б43 Основы геологии: учеб. пособие/ В.В.Белкин.- Перм. гос. техн. ун-т. – Березниковский филиал, 243 с.

Изложено содержание курса «Геология», контрольные вопросы, рекомендуемая литература для студентов специальности «Подземная разработка месторождений полезных ископаемых» при изучении основ геологии.

«Пермский государственный технический университет», 2008

Часть I. Основные данные о Земле и земной коре…. ……… 13

· Глава 1. Форма, размеры и строение Земли…. ……. 13

o 1.1. Форма и размеры Земли……………. ……13

o 1.2. Внутреннее строение Земли………. …. 15

o 1.3. Термодинамические условия………. ……18

§ Плотность. Давление. Ускорение силы тяжести . 18

§ Магнетизм. Магнитное поле Земли. Тепловой режим Земли ……………………. 19

§ Температура внутри Земли. Средний химический состав Земли………………. ………………21

· Глава 2. Вещественный состав земной коры…………………..25

o 2.1. Химический состав земной коры………………………25

§ Физические свойства минералов…. 27

§ Оптические свойства минералов…. 28

§ Механические свойства минералов. 29

§ Классификация минералов и их описание. 30

§ Классы самородных элементов и сульфидов ..30

§ Класс галоидных соединений…………………31

§ Класс оксидов и гидроксидов…………………32

§ Наиболее распространенные магматические породы. Нормальный ряд…………………………………. 43

§ Осадочные горные породы…………. 47

§ Метаморфические горные породы ………………….54

§ Породы регионального метаморфизма……………. 55

· Глава 3. Строение земной коры, мантии и ядра Земли…. …58

o 3.1. Строение земной коры …………………………………58

§ Континентальный тип земной коры. 58

o 3.2. Состав и состояние вещества мантии и ядра Земли. 61

Часть II. Геологические процессы…………………………………………. 66

Экзогенные процессы……………………………………………. 66

· Глава 4. Выветривание…………………………………………. 66

o 4.1. Физическое выветривание………………. 66

o 4.2. Химическое выветривание …………………………….69

o 4.3. Кора выветривания………………………. 71

o 4.4. Кора выветривания и полезные икопаемые…. ….…..76

o 4.5. Почвы и почвообразование……………. 76

· Глава 5. Геологическая деятельность ветра……………..…….79

o 5.2. Аккумуляция и эоловые отложения……………….…. 80

§ Формы эолового песчаного рельефа……………..… 82

· Глава 6. Геологическая деятельность поверхностных текучих вод………………. 85

o 6.1. Плоскостной склоновый сток………………..………. 85

o 6.2. Деятельность временных русловых потоков………….86

o 6.4. Строение пойм и фациальный состав аллювия …. 92

o 6.5. Цикловые эрозионные врезы и надпойменные речные террасы……………………………………. …………93

o 6.6. Устьевые части рек………………………..……………95

o 6.7. Теоретическое и практическое значение деятельности рек………………. ……………………………… 97

· Глава 7. Геологическая деятельность подземных вод…. 101

o 7.1. Виды воды в горных породах…………………….…..101

§ Водноколлекторские свойства горных пород …. 101

o 7.2. Происхождение подземных вод………..…………… 104

o 7.3. Классификация подземных вод………………………105

o 7.4. Грунтовые воды и их режим …………………………106

o 7.5. Напорные подземные воды …………. 109

o 7.6. Общая минерализация и химический состав подземных вод………………. ……………………….111

o 7.7. Минеральные воды …………………………………. 114

o 7.8. Карстовые процессы…………………. 115

o 7.9. Оползневые процессы…………………………………118

· Глава 8. Геологическая деятельность ледников. 122

o 8.2. Движение ледников…………………………. ……… 125

o 8.3. Ледниковое разрушение и осадкообразование. …..126

o 8.4. Переносная и аккумулятивная деятельность ледников…………………………………………………………. 127

o 8.5. Флювиогляциальные или водно-ледниковые отложения……………………………. 130

o 8.6.Отложения в перигляциальных областях……. 132

· Глава 9. Геологическая деятельность океанов и морей . …135

o 9.1. Основные особенности подводного рельефа океанов и морей. 135

o 9.2. Химические и физические свойства вод океанов и морей………. …. 137

o 9.3. Органический мир океанов и морей………………….139

o 9.4. Разрушительная деятельность моря………………….142

o 9.5. Образование осадков в океанах и морях и их генетические типы………………………………………………..144

§ Генетические типы донных осадков…. ….145

o 9.6. Диагенез и последиагенетические изменения осадочных пород …………………………………………………154

o 9.7. Понятие о фациях……………………. 157

Эндогенные процессы…………………………..……………. 160

· Глава 10. Магматизм……………………………….……………160

o 10.1. Понятие о магме…………………………………….. 160

o 10.2. Интрузивный магматизм…………………….………163

§ 10.3.1. Продукты извержения вулканов……. …167

§ 10.3.2. Типы вулканических построек……….……171

§ 10.3.3. Типы вулканических извержений…………173

§ 10.3.4. Поствулканические явления ……. ……175

§ 10.3.5. Географическое распространение современных вулканов и проблема магматических очагов……………. …….177

· Глава 11. Метаморфизм…………………………. …………… 180

o 11.1. Факторы метаморфизма …………………………….180

o 11.2. Основные типы метаморфизма…………………….. 181

o 11.3. Понятие о фациях метаморфизма…. 183

· Глава 12. Современные и новейшие тектонические движения и методы их изучения …………. …185

o 12.1. Современные вертикальные движения……. …..186

o 12.2. Современные горизонтальные движения . ……..186

o 12.3. Новейшие движения и методы их изучения. 188

· Глава 13. Тектонические нарушения………………………….194

o 13.1. Деформации и нарушения …………………………..195

o 13.2. Складчатые нарушения ……………………………..197

o 13.3. Разрывные нарушения……………………………….202

§ Основные типы тектонических разрывов. 203

§ Сочетание разрывов и их соотношение со складчатостью…………. 205

· Глава 14. Землетрясения……………………………………….. 209

o 14.1. Очаг, сейсмические волны, магнитуда и энергия землетрясений…………………………………………………….209

o 14.2. Географическое распространение и тектонический контроль землетрясений…………. ……….213

o 14.3. Сейсмическое районирование и прогноз землетрясений…………………………………………………….215

· Глава 15. Основные структурные элементы земной коры. 218

Часть III. Основы исторической геологии ………………………………..225

· Глава 16. Относительная и абсолютная геохронология и методы реконструкции геологического прошлого………. 225

o 16.1. Относительная геохронология………………………227

o 16.2. Абсолютная геохронология …………………………230

o 16.3. Периодизация истории земли и международные геохронологическая и стратиграфическая шкалы…. …. 232

o 16.4. Местные стратиграфические подразделения…………………………………………………….235

o 16.5. Восстановление физико-географических обстановок геологического прошлого…. 236

o 16.6. Тектонические движения геологического прошлого и взаимоотношения пластов горных пород………………………………………………………………240

o 16.7. История развития земной коры……. 242

Геология (греч. «гео» — земля, «логос» — учение) — одна из важнейших наук о Земле. Она занимается изучением состава, строения, истории развития Земли и процессов, протекающих в ее недрах и на поверхности. Современная геология использует новейшие достижения и методы ряда естественных наук – математики, физики, химии, биологии, географии. Значительный прогресс в указанных областях наук и геологии ознаменовался появлением и развитием важных пограничных наук о Земле – геофизики, геохимии, биогеохимии, кристаллохимии, палеогеографии, позволяющих получить данные о составе, состоянии и свойствах вещества глубоких частей земной коры и оболочек Земли, расположенных ниже. Особо следует отметить многостороннюю связь геологии с географией (ландшафтоведением, климатологией, гидрологией, гляциологией, океанографией) в познании различных геологических процессов, совершающихся на поверхности Земли. Взаимосвязь геологии и географии особенно проявляется в изучении рельефа земной поверхности и закономерностей его развития. Геология при изучении рельефа использует данные географии, так же как и география опирается на историю геологического развития и взаимодействия различных геологических процессов. Вследствие этого наука о рельефе – геоморфология – фактически является также пограничной наукой.

По геофизическим данным в строении Земли выделяется несколько оболочек: земная кора, мантия и ядро Земли. Предметом непосредственного изучения геологии являются земная кора и подстилающий твердый слой верхней мантии — литосфера (греч. «литос» — камень). Сложность изучаемого объекта вызвала значительную дифференциацию геологических наук, комплекс которых совместно с пограничными науками (геофизикой, геохимией и др.) позволяет получить освещение различных сторон его строения, сущность совершающихся процессов, историю развития и др.

Одним из нескольких основных направлений в геологии является изучение вещественного состава литосферы: горных пород, минералов, химических элементов. Одни горные породы образуются из магматического силикатного расплава и называются магматическими или изверженными, другие – путем осаждения и накопления в морских и континентальных условиях и называются осадочными; третьи – за счет изменения различных горных пород под влиянием температуры и давления, жидких и газовых флюидов и называются метаморфическими.

Изучением вещественного состава литосферы занимается комплекс геологических наук, объединяющихся часто под названием геохимического цикла. К ним относятся: петрография (греч. «петрос» — камень, скала, «графо» — пишу, описываю), или петрология — наука, изучающая магматические и метаморфические горные породы, их состав, структуру, условия образования, степень изменения под влиянием различных факторов и закономерность распределения в земной коре. Литология (греч. «литос» — камень) – наука, изучающая осадочные горные породы. Минералогия — наука, изучающая минералы: природные химические соединения или отдельные химические элементы, слагающие горные породы. Кристаллография и кристаллохимия занимаются изучением кристаллов и кристаллического состояния минералов. Геохимия – обобщающая синтезирующая наука о вещественном составе литосферы, опирающаяся на достижения указанных выше наук и изучающая историю химических элементов, законы их распределения и миграции в недрах Земли и на ее поверхности. С рождением изотопной геохимии в геологии открылась новая страница в восстановлении истории геологического развития Земли.

Изучение вещественного состава литосферы, как и других процессов, производится различными методами. В первую очередь это прямые геологические методы – непосредственное изучение горных пород в естественных обнажениях на берегах рек, озер, морей, разрезов шахт, рудников, кернов буровых скважин. Все это ограничено относительно небольшими глубинами. Наиболее глубокая, пока единственная в мире, Кольская скважина достигла всего лишь 12,5 км. Но более глубокие горизонты земной коры и прилежащей части верхней мантии также доступны непосредственному изучению. Этому способствуют извержения вулканов, доносящие до нас обломки пород верхней мантии, заключенные в излившейся магме – лавовых потоках. Такая же картина наблюдается в алмазоносных трубках взрыва, глубина возникновения которых соответствует 150–200 км. Помимо указанных прямых методов в изучении веществ литосферы широко применяются оптические методы и другие, физические и химические исследования – рентгеноструктурные, спектро-графические и др. При этом широко используются математические методы на основе ЭВМ для оценки достоверности химических и спектральных анализов, построения рациональных классификаций горных пород и минералов и др. В последние десятилетия применяются, в том числе и с помощью ЭВМ, экспериментальные методы, позволяющие моделировать геологические процессы; искусственно получать различные минералы, горные породы; воссоздавать огромные давления и температуры и непосредственно наблюдать за поведением вещества в этих условиях; прогнозировать движение литосферных плит и даже, в какой-то степени, представить облик поверхности нашей планеты в будущие миллионы лет.

Следующим направлением геологической науки является динамическая геология, изучающая разнообразные геологические процессы, формы рельефа земной поверхности, взаимоотношения различных по генезису горных пород, характер их залегания и деформации. Известно, что в ходе геологического развития происходили многократные изменения состава, состояния вещества, облика поверхности Земли и строения земной коры. Эти преобразования связаны с различными геологическими процессами и их взаимодействием. Среди них выделяются две группы: 1) эндогенные (греч. «эндос» — внутри), или внутренние, связанные с тепловым воздействием Земли, напряжениями, возникающими в ее недрах, с гравитационной энергией и ее неравномерным распределением; 2) экзогенные (греч. «экзос» — снаружи, внешний), или внешние, вызывающие существенные изменения в поверхностной и приповерхностной частях земной коры. Эти изменения связаны с лучистой энергией Солнца, силой тяжести, непрерывным перемещением водных и воздушных масс, циркуляцией воды на поверхности и внутри земной коры, с жизнедеятельностью организмов и другими факторами. Все экзогенные процессы тесно связаны с эндогенными, что отражает сложность и единство сил, действующих внутри Земли и на ее поверхности.

В область динамической геологии входит геотектоника (греч. «тектос» — строитель, структура, строение) – наука, изучающая структуру земной коры и литосферы и их эволюцию во времени и пространстве. Частные ветви геотектоники составляют: структурная геология, занимающаяся формами залегания горных пород; тектонофизика, изучающая физические основы деформации горных пород; региональная геотектоника, предметом изучения которой служит структура и ее развитие в пределах отдельных крупных регионов земной коры. Важными разделами динамической геологии являются сейсмология (греч. «сейсмос» — сотрясение) — наука о землетрясе-ниях и вулканология, занимающаяся современными вулканическими процессами.

История геологического развития земной коры и Земли в целом является предметом изученияисторической геологии, в состав которой входит стратиграфия (греч. «стратум» — слой), занимающаяся последова-тельностью формирования толщ горных пород и расчленением их на различные подразделения, а также палеогеография (греч. «паляйос» — древний), изучающая физико-географические обстановки на поверхности Земли в геологическом прошлом, и палеотектоника, реконструирующая древние структурные элементы земной коры. Расчленение толщ горных пород и установление относительного геологического возраста слоев невозможны без изучения ископаемых органических остатков, которым занимается палеонтология, тесно связанная как с биологией, так и с геологией. Следует подчеркнуть, что важной геологической задачей является изучение геологического строения и развития определенных участков земной коры, именуемых регионами и обладающих какими-то общими чертами структуры и эволюции. Этим занимается обычно региональная геология, которая практически использует все перечисленные ветви геологической науки, а последние, взаимодействуя между собой, дополняют друг друга, что демонстрирует их тесную связь и неразрывность. При региональных исследованиях широко используются дистанционные методы, когда наблюдения осуществляются с вертолетов, самолетов и с искусственных спутников Земли.

Косвенные методы познания, в основном глубинного строения земной коры и Земли в целом, широко используются геофизикой — наукой, основанной на физических методах исследования. Благодаря различным физическим полям, применяемым в подобных исследованиях, выделяются магнитометрические, гравиметрические, электрометрические, сейсмометрические и ряд других методов изучения геологической структуры. Геофизика тесно связана с физикой, математикой и геологией.

Одна из важнейших задач геологии – прогнозирование залежей минерального сырья, составляющего основу экономической мощи государства. Этим занимается наука о месторождениях полезных ископаемых, в сферу которой входят как рудные и нерудные ископаемые, так и горючие – нефть, газ, уголь, горючие сланцы. Не менее важным полезным ископаемым в наши дни является вода, особенно подземная, происхождением, условиями залегания, составом и закономерностями движений которой занимается наука гидрогеология (греч. «гидер» — вода), связанная как с химией, так и с физикой и, конечно, с геологией.

Важное значение имеет инженерная геология — наука, исследующая земную кору в качестве среды жизни и разнообразной деятельности человека. Возникнув, как прикладная ветвь геологии, занимающаяся изучением геологических условий строительства инженерных сооружений, эта наука в наши дни решает важные проблемы, связанные с воздействием человека на литосферу и окружающую среду. Инженерная геология взаимодействует с физикой, химией, математикой и механикой, с одной стороны, и с различными дисциплинами геологии – с другой, с горным делом и строительством – с третьей. За последнее время оформилась как самостоятельная наука геокриология (греч. «криос» – холод, лед), изучающая процессы в областях развития многолетнемерзлых горных пород «вечной мерзлоты», занимающих почти 50% территории РФ. Геокриология тесно связана с инженерной геологией.

С начала освоения космического пространства возникла космическая геология ,или геология планет. Освоение океанских и морских глубин привело к появлению морской геологии, значение которой быстро возрастает в связи с тем, что уже сейчас почти треть добываемой в мире нефти приходится на дно акваторий морей и океанов.

Разработка теоретических проблем геологии сочетается с решением ряда народнохозяйственных задач: 1) поиск и открытия новых месторождений различных полезных ископаемых, являющихся основной базой промышленности и сельского хозяйства; 2) изучение и определение ресурсов подземных вод, необходимых для питьевого и промышленного водоснабжения, а также мелиорации земель; 3) инженерно-геологическое обоснование проектов возводимых крупных сооружений и научный прогноз изменения условий после окончания их строительства; 4) охрана и рациональное использование недр Земли.

Познание всех закономерностей эволюции Земли, ее происхождения и развития исключительно важно в контексте общего материалистического понимания природы, в тех философских построениях, которые отражают единство мира. В этом заключается общенаучное значение геологии.

В основу данного учебного пособия положен курс геологии, читаемый на геологическом факультете МГУ – «Короновский Н.В., Якушова А.Ф. Основы геологии. Учебное издание. М., Высшая школа,1991». Из курса удалена глава «Геологические процессы в областях распространения многолетнемерзлых горных пород», сокращены главы, посвященные истории развития Земли и добавлены некоторые современные сведения.

ОСНОВНЫЕ ДАННЫЕ О ЗЕМЛЕ

И ЗЕМНОЙ КОРЕ

Земля, имея форму геоида – эквипотенциальной поверхности, сила тяжести к которой повсеместно направлена перпендикулярно, обладает неоднородностью физических свойств и дифференцированностью состава сферических оболочек: земной коры, мантии, внешнего и внутреннего ядра. Земная кора и верхняя часть верхней мантии, образующие твердую литосферу, подстилаются пластичной астеносферой, играющей важную роль в глубинных геологических процессах. Химический состав Земли близок к среднему химическому составу метеоритов, а состав сферических оболочек резко неоднороден и изменяется с глубиной.

ФОРМА, РАЗМЕРЫ И СТРОЕНИЕ ЗЕМЛИ

Форма и размеры земли

Земля одна из девяти планет, вращающихся вокруг Солнца. Первые представления о формах и размерах Земли появились еще в глубокой древности. Античные мыслители (Пифагор – V в. до н.э., Аристотель – III в. до н.э. и др.) высказывали мысль, что наша планета имеет шарообразную форму.

Геодезические и астрономические исследования последующих столетий дали возможность судить о действительной форме Земли и ее размерах. Известно, что формирование Земли происходило под действием двух сил — силы взаимного притяжения частиц ее массы и центробежной силы, обусловленной вращением планеты вокруг своей оси. Равнодействующей обеих названных сил является сила тяжести, выражаемая в ускорении, которое приобретает каждое тело, находящееся у поверхности Земли. На рубеже XVII и XVIII вв. впервые Ньютон теоретически обосновал

Рис. 1.1.Эллипсоид вращения

положение о том, что под воздействием силы тяжести Земля должна иметь сжатие в направлении оси вращения и, следовательно, ее форма представляет эллипсоид вращения или сфероид. Степень сжатия зависит от угловой скорости вращения. Чем быстрее вращается тело, тем больше оно сплющивается у полюсов. На рис. 1.1, изображающем эллипсоид вращения, выражена большая экваториальная ось (ЗОВ) и малая полярная ось (СОЮ).

Величины а = ЗОВ/2 и в = СОЮ/2 соответствуют полуосям эллипсоида. Сжатие эллипсоида будет выражено (а — в)/а. Разница полярного и экваториального радиусов составляет 21 км. Детальными последующими измерениями, особенно новыми методами исследования с искусственных спутников, было показано, что Земля сжата не только на полюсах, но также несколько и по экватору (наибольший и наименьший радиусы по экватору отличаются на 210 м), т.е. Земля является не двухосным, а трехосным эллипсоидом. Кроме того, расчетами Т. Д. Жонгловича и С. И. Тропининой показана несиммет- ричность Земли по отношению к экватору: южный полюс расположен ближе к экватору, чем северный.

В связи с расчленением рельефа (наличием высоких гор и глубоких впадин) действительная форма Земли является более сложной, чем трехосный эллипсоид. Наиболее высокая точка на Земле — гора Джомолунгма в Гималаях — достигает высоты 8848м. Наибольшая глубина 11034 м обнаружена в Марианской впадине. Таким образом, наибольшая амплитуда рельефа земной поверхности составляет немногим менее 20 км. Учитывая эти особенности, немецкий физик Листинг в 1873 г. фигуру Земли назвал геоидом, что дословно обозначает «землеподобный».

Геоид – некоторая вообража-емая уровенная поверхность, которая определяется тем, что направление силы тяжести к ней всюду перпендикулярно. Эта поверхность совпадает с уровнем воды в Мировом океане, который мысленно проводится под континентами. Это та поверхность, от которой производится отсчет высот рельефа. Поверхность геоида приближается к поверхности трехосного эллипсоида, отклоняясь от него местами на величину 100–150 м (повышаясь на материках и понижаясь на океанах, рис. 1.2.), что, по-видимому, связано с плотностными неоднородностями масс в Земле и появляющимися из-за этого аномалиями силы тяжести.

В Советском Союзе в настоящее время принимается эллипсоид Ф. Н. Красовского и его учеников (А. А. Изотова и др.), основные параметры которого подтверждаются современными исследованиями и с орбитальных станций. По этим данным экваториальный радиус равен 6378,245 км, полярный радиус — 6356,863 км, полярное сжатие — 1/298,25. Объем Земли составляет 1,083 • 10 12 км 3 , а масса — 6 • 10 27 г. Ускорение силы тяжести на полюсе — 983 см/с 2 , на экваторе — 978 см/с 2. Площадь поверхности Земли около 510 млн. км 2 , из которых 70,8% представляет Мировой океан и 29,2% – суша. В распределении океанов и материков наблюдается определенная дисимметрия. В Северном полушарии это соотношение составляет 61 и 39%, в Южном – 81 и 19%.

Внутреннее строение земли

Изучение внутреннего строения Земли производится различными методами. Геологические методы, основанные на изучении естественных обнажений горных пород, разрезов шахт и рудников, кернов глубоких буровых скважин, дают возможность судить о строении приповерхностной части земной коры. Глубина известных пробуренных скважин достигает 7,5–9,5 км и только одна в мире опытная скважина, заложенная на Кольском полуострове, уже достигла глубины более 12 км при проектной глубине до 15 км. В вулканических областях по продуктам извержения вулканов можно судить о составе вещества на глубинах 50–100 км.

В целом же глубинное внутреннее строение Земли изучается главным образом геофизическими методами: сейсмическим, гравиметрическим, магнитометрическим и др. Одним из важнейших методов является сейсмический (греч. «сейсмос» — трясение) метод, основанный на изучении естественных землетрясений и «искусственных землетрясений», вызываемых взрывами или ударными вибрационными воздействиями на земную кору.

Очаги землетрясений располагаются на различных глубинах от приповерхностных (около 10 км) до самых глубоких (до 700 км), прослеженных в разломных зонах по окраинам Тихого океана. Возникающие в очаге сейсмические волны как бы просвечивают Землю и дают представление о той среде, через которую они проходят. В очаге (или фокусе) возникают два главных типа волн:

1) самые быстрые продольные Р-волны (т.е. первичные — primary);

2) более медленные поперечные S-волны (т.е. вторичные — secondary).

При распространении Р-волн горные породы испытывают сжатие и растяжение (смещение частиц среды вдоль направления волны). Р-волны проходят в твердых и жидких телах земных недр. Поперечные S-волны распространяются только в твердых телах, и с их распространением связаны колебания горных пород под прямым углом к направлению распространения волны (рис. 1.3). При прохождении поперечных волн упругие породы подвергаются деформации сдвига и кручения.

Рис. 1.3. Два типа объемных сейсмических волн (по Б. Болту): а — сжатие — растяжение, б — удвоенная амплитуда
Рис. 1.4. Отраженные и преломленные сейсмические волны в различных средах

Кроме того, выделяются поверхностные L-волны (т.е. длинные — long), которые отличаются сложными синусоидаль-ными колебаниями вдоль или около земной по-верхности. Регистрация прихода сейсмических волн производится на специальных сейсми-ческих станциях, обору-дованных записывающи-ми приборами – сейсмографами, располо-женными на разных расстояниях от очага. Такое расположение сейсмостанций позволяет судить о скорости рас-пространения колебаний на разных глубинах, поскольку к более отдаленным станциям приходят волны, прошедшие через более глубокие слои Земли. Запись сейсмографом прихода волн называется сейсмограммой.

Реальные скорости сейс-мических воли зависят от упругих свойств и плотности горных пород, через которые они проходят. Изменения скорости сейсмических волн отчетливо показывают на неоднородность и расслоенность Земли. О раз-личных слоях и состоянии веществ, их слагающих, указы-вают преломленные и отражен-ные волны от их граничных поверхностей (рис. 1.4).

На основании скорости распространения сейсмических волн австралийский сейсмолог К. Буллен разделил Землю на ряд зон, дал им буквенные обозначения в определенных усредненных интервалах глубин, которые используются с некоторыми уточнениями до настоящего времени (рис. 1.5).

Рис. 1.5. Строение Земли. Оболочки Земли, выделенные по распространению сейсмических волн

Выделяют три главные области Земли:

1. Земная кора (слой А) – верхняя оболочка Земли, мощность которой изменяется от 6–7 км под глубокими частями океанов до 35–40 км под равнинными платформенными территориями кон-тинентов, до 50–70(75) км под горными сооружениями (наибольшие под Гималаями и Андами).

2. Мантия Земли, распространя-ющаяся до глубин 2900 км. В ее пределах по сейсмическим данным выделяются: верхняя мантия – слой В глубиной до 400 км и С – до 800–1000 км (некоторые исследователи слой С называют средней мантией); нижняя мантия – слой D до глубины 2700 с переходным слоем D 1 – от 2700 до 2900 км.

3. Ядро Земли, подразделяется: на внешнее ядро – слой Е в пределах глубин 2900–4980 км; переходную оболочку – слой F – от 4980 до 5120 км и внутреннее ядро – слой G до 6971 км.

Земная кора отделяется от слоя В верхней мантией достаточно резкой граничной скоростью. В 1909 г. югославский сейсмолог А. Мохоровичич при изучении балканских землетрясений впервые установил наличие этого раздела, носящего теперь его имя и принятого за нижнюю границу земной коры. Часто эту границу сокращенно называют границей Мохо или М. Второй резкий раздел совпадает с переходом от нижней мантии к внешнему ядру, где наблюдается скачкообразное падение скорости продольных волн с 13,6 до 8,1 км/с, а поперечные волны гасятся. Внезапное резкое уменьшение

1 По Б. Болту приведены следующие границы отдельных зон: основание слоя С – 670км, слоя D – 2885 км, слой F в интервале 4590–5155 км. Близкие данные в работе В. А. Жаркова.

скорости продольных волн и исчезновение поперечных волн во внешнем ядре свидетельствуют о необычайном состоянии вещества, отличающемся от твердой мантии.

Эта граница названа именем Б. Гутенберга. Третий раздел совпадает с основанием слоя F и внутренним ядром Земли (слой G).

Термодинамические условия

Плотность. Средняя плотность Земли составляет 5,52 г/см 3 . Горные породы, слагающие земную кору, отличаются малой плотностью. В осадочных породах плотность около 2,4–2,5 г/см 3 , в гранитах и большинстве метаморфических пород – 2,7–2,8 г/см 3 , в основных магматических породах – 2,9–3,0 г/см 3 . Средняя плотность земной коры принимается около 2,8 г/см 3 . Сопоставление средней плотности земной коры с плотностью Земли указывает на то, что во внутренних оболочках – мантии и ядре, плотность должна быть значительно выше.

По имеющимся данным в кровле верхней мантии, ниже границы Мохо, плотность пород составляет 3,3–3,4 г/см 3 , у нижней границы нижней ман-тии (глубина 2900 км) – примерно 5,5–5,7 г/см 3 , ниже границы Гутенберга (верхняя граница внешнего ядра) – 9,7–10,0 г/см 3 , затем повышается до 11,0–11,5 г/см 3 , увеличиваясь во внутреннем ядре до 12,5–13,0 г/см 3 .

Давление. Расчеты давления на различных глубинах Земли в соответствии с указанными плотностями выражаются следующими значениями.

Ускорение силы тяжести. В ряде пунктов поверхности Земли геофизическим гравиметрическим методом выполнены измерения абсолютной величины силы тяжести с помощью гравиметров. Эти исследования позволяют выявить гравиметрические аномалии – области значительного увеличения или уменьшения силы тяжести. Увеличение силы тяжести обычно связано с присутствием более плотного вещества, уменьшение указывает на меньшую плотность. Что касается ускорения силы тяжести, то его величина различна. На поверхности оно в среднем составляет 982 см/с 2 (при 983 см/с 2 — на полюсе и 978 см/с 2 — на экваторе), с глубиной сначала увеличивается, затем быстро падает. По данным В. А. Магницкого, максимальное значение ускорения силы тяжести достигает в основании нижней мантии у границы с внешним ядром 1037 см/с 2 . В пределах ядра Земли ускорение силы тяжести начинает значительно уменьшаться, доходя до 452 см/с 2 в промежуточном слое F, до 126 см/с 2 на глубине 6000 км и в центре до 0.

Магнетизм. Земля действует как гигантский магнит с силовым полем вокруг. Сведения о распределении магнитного поля Земли на ее поверхности и околоземном пространстве дают наземные, морские и аэромагнитные съемки, а также измерения, производимые на низколетящих искусственных спутниках Земли.

Геомагнитное поле дипольное, магнитные полюсы Земли не совпадают с географическими, т.е. истинными — северным и южным. Между магнитным и географическим полюсами образуется некоторый угол (около 11,5 o ), называемый магнитным склонением. Различают также магнитное наклонение, определяемое как угол между магнитными силовыми линиями и горизонтальной плоскостью. Происхождение постоянного магнитного поля Земли связывают с действием сложной системы электрических токов, возникающих при вращении Земли и сопровождающих турбулентную конвекцию (перемещение) в жидком внешнем ядре. Таким образом, Земля работает как динамомашина, в которой механическая энергия этой конвекционной системы генерирует электрические токи и связанный с ними магнетизм.

Источник

Читайте также:  Строение солнечной системы система земля луна тест с ответами