Меню

Явления при растекании тока в земле

ЯВЛЕНИЕ РАСТЕКАНИЯ ТОКА В ЗЕМЛЕ

В процессе эксплуатации электроустановок возможны случаи, когда по земле будет протекать ток. Протекание тока может быть преднамеренным (использование земли в качестве провода) или случайным (замыкание токоведущей части на заземленный корпус электроустановки, падение провода на землю). Стекание тока в землю сопровождается возникновением на заземлителе и поверхности земли вокруг него потенциалов. Возникающую при этом картину поля рассмотрим на примере одиночного полусферического заземлителя на поверхности земли (рис.1).

Приращение потенциала на элементарном слое полусферических поверхностей вокруг заземлителя (считаем грунт однородным)

где Ех – напряженность электрического поля в точке, удаленной от заземлителя на расстоянии Х;

где jх – плотность тока в рассматриваемом слое;

p – удельное сопротивление грунта,

где I3 – величина тока, стекающего в землю (ток замыкания).

Тогда приращение потенциала на элементарном слое можно записать

Интегрируя по Х, в пределах от Х до ∞, получаем выражение, характеризующее поле растекания потенциала в земле:

где К – постоянная величина.

Таким образом, потенциал на поверхности земли вокруг заземлителя изменяется по закону гиперболы, уменьшаясь от своего максимального значения непосредственно на заземлителе до нуля по мере удаления от заземлителя.

где r – радиус заземлителя.

Теоретически поле растекания простирается до бесконечности, однако для одиночного заземлителя уже на расстоянии около 20 м площадь слоя земли настолько велика, что плотность тока здесь практически равна нулю. Поэтому потенциал в точках, удаленных на 20 м и более от заземлителей, можно принимать равным нулю.

Проведенный анализ показывает, что грунт в поле растекания ведет себя как обычное сопротивление, уменьшая потенциал от некоторого значения в месте ввода тока в землю до нуля.

Сопротивлением заземляющего устройства, или сопротивлением растеканию тока данного заземлителя, называется сопротивление грунта поля растекания, создаваемого проводящим элементом, с которого в землю стекает ток.

Специальный анализ, выходящий за рамки настоящей работы, показывает, что величина сопротивления этой области грунта зависит от формы, количества и расположения элементов, создающих поле растекания, и удельного сопротивления земли.

В нашем случае сопротивление растеканию тока полусферического заземлителя можно определить как

где UR – падение напряжения на сопротивлении R;

I – ток через это сопротивление.

Падение напряжения на сопротивлении полусферического заземлителя

где r – радиус заземлителя.

Деля это выражение на ток, получаем окончательно для сопротивления растеканию тока полусферического заземлителя

В реальных условиях, когда грунт вокруг заземлителя неоднороден, распределение потенциала происходит не по гиперболе, а по более сложной кривой, и выражение для сопротивления растеканию тока будет более сложным.

Протекание токов в земле представляет определенную опасность для человека. Это связано с возникновением напряжения прикосновения и шагового напряжения.

Напряжением прикосновения называется разность потенциалов двух точек электрической цепи, которых одновременно касается человек.

В случае касания человеком корпуса заземленной установки, на которой произошло замыкание токоведущей части, под напряжением прикосновения понимается разность между потенциалом рук, касающихся корпуса, и потенциалом основания, на котором стоит человек (рис.1). Пренебрегая падением напряжения в заземляющих проводниках, можно считать, что потенциал рук равен потенциалу заземлителя, а напряжение прикосновения

где λ1 – коэффициент прикосновения.

Поскольку φз – величина постоянная, напряжение прикосновения определяется формой кривой распределения потенциала, оно возрастает по мере удаления от заземлителя. Практически при расстояниях, превышающих 20 м, напряжение прикосновения постоянно и имеет наибольшее значение, при этом λ1=1. Это – наиболее опасный случай прикосновения. Если прикосновение происходит около заземлителя, то напряжение прикосновения равно нулю и λ1=0. Это — безопасный случай, т.к. человек не подвергается воздействию напряжения, хотя он и находится под потенциалом заземлителя.

Таким образом, напряжение прикосновения зависит от тока замыкания в землю Iз, удельного электрического сопротивления грунта, геометрии заземляющего устройства и расстояния до человека от места замыкания (заземлителя). Чем дальше от заземлителя находится человек, тем больше Uпр и наоборот.

Рисунок 1 — Явление растекания тока в земле

Источник

Явление при растекании тока к земле

Явлением при растекании тока к земле (замыканием на землю) называется случайное электрическое соединение, находящихся под напряжением частей электроустановки с землей. Замыкание на землю происходит вследствие появления контакта между токоведущими частями (ТВЧ) и заземленным корпусом или конструктивными частями оборудования:

Читайте также:  Любовь моя покинет эту землю

— при падении на землю оборванного провода;

— при нарушении (пробое) изоляции оборудования.

Во всех этих случаях электрический ток от частей находящийся под напряжением проходит землю через электрод, который осуществляет контакт с грунтом.

Специальный металлический электрод принято называть заземлителем. Размеры электрода составляет от нескольких сантиметров до десятков и сотен метров. Форма электрода и состав грунта могут быть различными, и поэтому закон распределения потенциала вокруг электрода определяется сложной зависимостью.

И для упрощения вводят допущение, что ток стекает в землю через одиночный заземлитель полусферической формы погруженной в однородный изотропный грунт с удельным сопротивлением ρ во много раз превышающий удельное сопротивление материала заземлителя. Если второй электрод находится на достаточно большом удалении, то линии тока вблизи исследуемого заземлителя направлены по радиусам от центра полусферы. Поскольку грунт однородный и изотропный, ток распределяется по этой поверхности равномерно. Поэтому плотность тока σ в точке А на поверхности грунта на расстоянии Х от заземлителя определяется, как:

.

Для определения потенциала точки А, лежащей на поверхности радиуса х, выделим элементарный слой dX падение напряжения в этом слое будет определяться по формуле:

Напряженность определяется из закона Ома, выраженного в дифференциальной форме:

Потенциал точки А или напряжение этой точки земли равно суммарному падению напряжения от точки А до земли, т.е. бесконечно удаленной точки с нулевым потенциалом:

Если учесть что , то:

,

То есть потенциал точки А изменяется по гиперболическому закону.

Uз – напряжение на заземляющем устройстве относительно земли.

Наибольший электрический потенциал будет в месте соприкосновения проводника с землей. По мере удаления от этого места потенциал поверхности грунта уменьшается, т.к. сечение проводника увеличивается пропорционально квадрату радиуса и на расстоянии равном примерно 20 м может быть принят равным нулю.

Дата добавления: 2015-07-30 ; просмотров: 1435 ;

Источник

Явления при стекании тока в землю.

Распределение потенциала на поверхности земли, схема.

Опасность поражения человека электрическим током во многом определяется явлениями, возникающими при стекании электрического тока в землю.

Стекание тока в землю происходит только через проводник, находящийся с нею в непосредственном контакте. Такой контакт может быть случайным или преднамеренным. В последнем случае проводник или группа соединенных между собой проводников, находящихся в контакте с землей, называется заземлителем.

Причинами стекания тока в землю является: замыкание токоведущей части на заземленный корпус электрооборудования; падения провода на землю; использование земли в качестве провода и т.д. Во всех этих случаях происходит резкое снижение потенциала заземлившейся части электрооборудования jз, В до значения, равного произведению тока, стекающего в землю, Iз, А, на сопротивление, которое этот ток встречает на своем пути, т. е. сопротивление заземлителя растеканию тока Rз, Ом:

Cтекание тока в землю сопровождается возникновением не только на заземлителе, но и в земле вокруг заземлителя, а следовательно, и на поверхности земли некоторых потенциалов.

Нам необходимо знать, от чего зависят значения этих потенциалов, как изменяются они при изменениях расстояния до заземлителя, т. е. знать уравнение потенциальной кривой.

Для упрощения анализа будем считать, что земля во всем своем объеме однородна, т.е. в любой точке обладает одинаковым удельным объемным сопротивлением r, Ом*м.

Распределение потенциала на поверхности земли. Замыкание частей электроустановок на землю сопровождается протеканием через нее тока. Земля становится участком электрической цепи. При этом вследствие сопротивления земли имеет место падение напряжения и появляется разность потенциалов между отдельными точками на поверхности земли.

Рассмотрим схему растекания тока в земле при пробое изоляции электроустановки или падении оборванного провода на землю (рис. 16.14). Примем, что связь с землей осуществляется через полусферический заземлитель. Грунт однородный с удельным сопротивлением р. В этом случае ток замыкания I3 будет стекать с поверхности заземлителя по направлению радиусов от центра сферы. Плотность тока δ в точке А на поверхности грунта на расстоянии х от центра сферы

Ток с заземлителя растекается по значительному объему земли. С увеличением расстояния от заземлителя плотность тока уменьшается вследствие резкого возрастания сечения земли, через которое протекает ток. В бесконечно удаленных от заземлителя точках (x>∞) плотность тока равна нулю.

Читайте также:  Мы воины своей земли

Измерения потенциалов в точке земли на разных расстояниях от заземлителя показали, что распределение потенциалов по поверхности земли при растекании тока с полусферического заземлителя подчиняется гиперболическому закону (см. кривую на рис. 16.14).

На расстоянии 1 м от заземлителя падение напряжения составляет 68%, на расстоянии 10 м — 92%, на расстоянии 20 м потенциалы точек настолько малы, что практически могут быть приняты равными нулю. Эти точки поверхности грунта можно считать находящимися вне зоны растекания и называть «землей» в электротехническом смысле слова.

Аналогичное распределение потенциалов происходит при растекании тока с заземлителей другой формы (труба, пластина, место соприкосновения оборванного провода с землей и т. п.).

Дата добавления: 2019-07-17 ; просмотров: 442 ; Мы поможем в написании вашей работы!

Источник

Понятие и расчет тока замыкания на землю

Такое явление, как растекание тока при замыкании на землю одного из фазных проводников, возникает вследствие его случайного соприкосновения с грунтом. К этому же типу внештатных ситуаций следует отнести и снижение изоляционных характеристик защитной оболочки кабеля, проложенного в земле.

Явление растекания

В 3-х фазной питающей сети, работающей по схеме с так называемой «изолированной» нейтралью, о замыкании фазы на землю можно судить по показаниям подключённого к ней индикаторного прибора (вольтметра). Для организации таких измерений его контрольные щупы подсоединяются к контактам вторичной обмотки измерительного трансформатора типа НТМИ, способного выдерживать длительные перенапряжения.

При непосредственном или прямом замыкании проводника на землю обмотка измерительного трансформатора накоротко замкнута, а показания соответствующего ей вольтметра будут нулевыми.

Одновременно с этим суммарный магнитный поток (индукция) в двух других обмотках НТМИ увеличится в √3 раз, а соответствующими вольтметрами вместо фазного измеряется линейное напряжение.

В случае практического измерения емкостного тока замыкания на землю используют метод «подбора». Его суть заключается в умышленных смещениях нейтрали (подача переменного напряжения в нейтраль) и измерении возникающих при этом токах.

Метод применяется только в сухую погоду к сетям не более 10 кВ. Проводить замеры тока замыкания на землю могут те работники, которые получили допуск.

Расчетный ток замыкания на землю определяется как геометрическая сумма его емкостных составляющих во всех рабочих жилах согласно следующей формуле:

С ростом протяжённости сети её емкость, естественно, возрастает и, согласно формуле, увеличивается аварийный ток утечки. Одновременно с этим в соответствии с требованиями ПУЭ величина тока в цепи не должна превышать следующих значений:

Для выполнения указанного требования в 3-х фазных питающих цепях должна быть принудительно организована компенсация емкостного тока замыкания на землю.

Последствия замыкания

Растекание тока в сетях с изолированной нейтралью возможно лишь через провод, находящийся в прямом контакте с грунтом. Самый близкий пример такой ситуации – искусственный заземлитель.

Стекание тока

Аварийное замыкание фазы на грунт приводит к тому же эффекту, в результате которого происходит резкое уменьшение потенциала проводника относительно земли.

В указанной ситуации такой провод формально превращается в одиночный заземлитель.

Напряжение в точке контакта понижается до значения, соответствующего произведению протекающего через неё тока на величину сопротивления почвы его растеканию.

Это явление очень полезно с точки зрения уменьшения опасности при случайном повреждении линии. Одновременно с этим понижение потенциала фазы приводит к ряду нежелательных последствий.

Одно из негативных последствий – эффект распределения потенциала по поверхности земли вблизи от зоны контакта. Вследствие этого в точках, по-разному удалённых от заземляющей конструкции, появляются различные по величине потенциалы, образующие перепады напряжения, опасные для попавших в эту зону людей.

Это обстоятельство послужило причиной введения такого показателя, как «напряжение шага», определяемого разностью потенциалов между его ступнями при передвижении в границах опасной зоны.

В связи с тем, что снижение потенциала по мере удаления от точки контакта происходит по экспоненте – максимальное напряжение шага наблюдается вблизи от неё. Минимум этой величины проявляется на участках, достаточно удаленных от эпицентра аварии.

Читайте также:  Четверть земли это сколько в 17 веке

Характер распределения тока замыкания на землю, величина сопротивления растеканию и распределение потенциалов на опасном участке – все эти показатели зависят от геометрических параметров образовавшегося соединения. Существенное влияние на них оказывает и состояние грунта в момент аварии (повышенная влажность, сухость или другие факторы).

Возникновение дуги

Ещё одним последствием замыкания фазного проводника на землю является образование электрической дуги, в процессе горения которой выделяется большое количество тепла и наблюдается ионизация воздуха. Это создаёт условия, способствующие появлению в линейных межфазных цепях короткого замыкания.

Прерывистый характер дуги, образующейся при замыкании на землю, приводит к появлению значительных перенапряжений величиной до 3,2 Uф.. С целью снижения амплитуды ёмкостных токов, увеличения времени восстановления напряжения на аварийной фазе, а также ограничения перенапряжений при последующих зажиганиях дуги в цепях устанавливается специальный дугогасящий реактор.

Компенсационные меры защиты

В соответствии с положениями ПУЭ в нормальных условиях работы сети должны предприниматься специальные меры защиты от возможного пробоя на землю.

Для ограничения емкостных токов в нейтраль трансформатора вводится специальный дугогасящий реактор (смотрите рисунок 1, б). С его помощью удаётся снизить (компенсировать) ток однофазного замыкания на землю, возникающий сразу после аварии.

Практически установлено, что при наличии компенсатора воздушные и кабельные линии могут работать в критическом аварийном режиме довольно продолжительное время и вот почему.

Как только протекающий в реакторе индуктивный ток Ip сравнивается по своей величине с противофазной емкостной составляющей Ic – наблюдается эффект компенсации, при котором Iр + Iс = 0 (явление резонанса токов).

Реакторы с индуктивным импедансом достаточно просто настраиваются на работу с переменным значением компенсационного потока и могут эксплуатироваться в режимах недо- и перекомпенсации.

Использование дугогасящего реактора оказывает определённое влияние на распределение потенциалов в линейных проводах и в нейтрали. В последней появляется напряжение смещения Ucм , вызванное асимметрией в цепи и приложенное к выводам реактора.

В резонансном режиме такое рассогласование приводит к искажению нормальной картины распределения потенциалов даже в отсутствии однофазного замыкания (ОЗЗ).

Искусственное предупреждение резонансных явлений может быть достигнуто путём преднамеренного рассогласования соответствующих цепей, в результате чего удаётся снизить Ucм и выровнять показания контрольных приборов.

Дополнительное замечание. Варьировать величину компенсационных токов допускается в пределах, при которых образовавшееся в случае аварии рассогласование не приводило бы к появлению Ucм более чем 0,7 Uф.

Порядок расчёта параметров однофазного замыкания

Расчет емкостного тока замыкания предлагаем рассмотреть на примере типовых электрических подстанций с действующим напряжением 10 киловольт.

Для повышения точности проводимых при этом выкладок советуем воспользоваться методом, при котором за основу берётся показатель удельного ёмкостного тока. (С его рабочими значениями можно будет ознакомиться в одной из таблиц, приведённых в приложении). Формула, в соответствии с которой рассчитывается этот показатель, выглядит следующим образом:

Uф – эта фазное напряжение 3-х фидерной электросети, киловольты,

Со – величины ёмкости каждой отдельной фазы по отношению к земле (микрофарады/километры).

Сразу же вслед за этим можно будет приступать к определению величины ёмкостной составляющей тока в самой фидерной линии:

По завершении основного расчёта переходим к определению параметров срабатывания защиты от перенапряжений (компенсационных токов).

При их проведении следует исходить из показателя емкостного тока защиты, определяемого по формуле:

где:
Кн – показатель надежности работы защиты (обычно он принимается равным 1,2),

Кбр – показатель так называемого «броска», учитывающий скачок тока в момент возникновения однофазного замыкания на землю (ОЗЗ),

Ic фидера макс. – емкостный ток подлежащего защите фидера.

Соблюдение неравенства, обозначенного в приведённой выше формуле, позволяет обеспечить условия, при которых даже при возникновении однофазного замыкания на землю защита не будет срабатывать.

Для реле ЭМ типа рекомендуемый показатель надёжности срабатывания защиты, как правило, выбирается равным 2 или 3 единицам. При этом в защитной схеме не предусматривается специальная временная задержка. При установке в этих цепях цифровых реле рабочее значение показателя Кбр = 1-1,5.

В заключение отметим, что для различных промышленных устройств фидерной защиты указанные параметры могут иметь значения, несколько отличающиеся от тех, что приведены в расчётах.

Источник