Меню

Является ли земля проводником электрического тока

Как земля проводит ток и почему заземление всё-таки работает: разгадка секрета

Подписка на рассылку

Заземление – одно из базовых понятий в электротехнике. С его помощью осуществляется принудительное замыкание токопроводящих частей электроустановки в землю. Это обязательное требование для ее безопасной эксплуатации.

Как работает заземление?

Принцип работы заземления базируется на следующих утверждениях:

  1. Нельзя полностью избежать пробоя изоляции на корпус электроустановки, а также значительно уменьшить ее сопротивление.
  2. Когда потенциал затрагивает корпус, это невозможно определить по внешним параметрам.
  3. Если в этом случае человек дотронется до корпуса электроустановки, он окажется под воздействием высокого потенциала.
  4. В данной ситуации электрический ток проходит через тело человека от проводящей поверхности к земле, что опасно для жизни.
  5. Чтобы избежать этой опасности, необходимо достичь разности потенциалов между приводящей поверхностью и землей. Для этого следует при помощи провода с небольшим сопротивлением соединить с землей части корпуса, выполненные из металла.

Благодаря этому в случае пробоя изоляции основной ток уйдет в землю, не затрагивая тело человека.

Почему земля обладает низким сопротивлением?

Закон Ома гласит, что ток во всех случаях протекает по замкнутому контуру. То есть ток движется через электроустановку с подключенной к ней системой заземления от одного из полюсов электростанции до заземляющего электрода. Небольшое заземление всей конструкции не гарантирует малое сопротивление обратной ветви цепи. Почва обладает достаточно большим удельным сопротивлением, поэтому кажется, что тело человека не становится дополнительным элементом заземления.

Стоит учитывать, что сопротивление обратной ветви контура заземления будет небольшим, поскольку между заземляющими электродами электроустановки и электростанции сечение среды очень велико.

Благодаря этому система заземления не только обеспечивает отличную защиту и надежность без обрывов, но и позволяет избежать прокладки доп.кабеля для коммутации соединителей электростанции и объекта.

Что еще нужно знать о заземлении?

Важно понимать, что для качественной работы системы заземления необходимо, чтобы переходной сопротивление, возникающее между землей и заземляющий электродом, было невелико. Этого можно достигнуть благодаря большой площади контакта (для этого выполняют сварку крепко скрепленных друг с другом пластин), а также с помощью установки электродов в грунте ниже глубины его промерзания, поскольку в этом случае его удельное сопротивление резко увеличивается. С реализацией данной задачи отлично справляются вертикальные заземлители.

Сопротивление человеческого тела равняется нескольким сотням Ом, поэтому максимально допустимое сопротивление системы заземления не может составлять более 4 Ом.

Источник

Чем «земля» отличается от «нуля»? Разбираемся в сложностях электрики

Если вы знакомы с электрикой, наверняка знаете понятия «нуль» и «земля». В чем разница, или это практически одно и то же? Ответ в нашей статье.

В Советском Союзе была принята двухпроводная сеть, где были лишь фазный и нулевой проводник, а заземление выполнялось на батарею или трубу водоснабжения. Сейчас стал популярен монтаж трехпроводной сети, в котором есть нулевой и заземляющий проводники. В щитовой они оба садятся на заземляющую шину. Если они объединены в щитовой, тогда чем они вообще отличаются? Отвечаем, опираясь на нормативные документы.

Что такое «нуль» и «земля» согласно ПУЭ?

То, что мы привыкли называть «нулем» и «землей» в ПУЭ называется нулевым рабочим проводником (N) и нулевым защитным проводником (PE). Вот как они трактуются в нормативном документе:

1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.

1.7.18.а Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока.

Из этих формулировок понятно, что защитный нулевой проводник необходим для защиты от поражения электрическим током. То есть к нему должно заземляться электрооборудование, например, стиральная машинка, бойлер, котел и т.д. В то же время рабочий нулевой проводник необходим для питания оборудования, то есть по нему будет протекать ток.

Читайте также:  Электрические токи земли это

В некоторых случаях допускается использовать «нуль» (PE) в качестве «земли», как это указано в ПУЭ 1.7.18.б. В этом случае провод становится совмещенным проводником, который сочетает функции нулевого защитного и нулевого рабочего проводников. Он будет называться PEN. Однако здесь есть один нюанс, который важно знать.

Дело в том, что согласно ПУЭ 1.7.83 «В цепи заземляющих и нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей». То есть нулевой защитный проводник («земля») должен идти непрерывно от щитка к розетке или осветительному прибору. Если мы, к примеру, посадим заземление на нуль, тогда «путь» прервется путем вынимания вилки из розетки. И если произойдет пробой, корпус остального оборудования, заземленного на этот провод, окажется под напряжением.

Далее в этом же пункте сказано: «В цепи нулевых рабочих проводников, если они одновременно служат для целей зануления, допускается применение выключателей, которые одновременно с отключением нулевых рабочих проводников отключают все провода, находящиеся под напряжением». Из этого следует, что «нуль» можно использовать в качестве «земли», если при его отключении, отключаются и все стальные проводники, находящиеся под напряжением. Осуществить такое в квартирных условиях довольно сложно.

Как должно осуществляться заземление в трехпроводной сети?

На данный момент в большинстве новостроек укладывают именно трехпроводную сеть, в которой идет фаза, нуль и заземление (желто-зеленый провод). «Нуль» и «земля» присоединяются в щитке к одной заземляющей шине, но не под общий контактный зажим (ПУЭ 7.1.36). Затем заземление одним непрерывным проводом подводится к каждой розетке. У большинства современного электрооборудования уже есть третий заземляющий контакт на вилке, который обеспечивает заземление корпуса прибора при включении его в розетку.

Вывод

Главная отличительная особенность «нуля» и «земли» в их назначении. «Нуль» совместно с фазой предназначен для питания электроприборов, а «земля» для защиты людей и животных от поражения электрическим током, если случится пробой. Рабочий «нуль» можно использовать в качестве «земли», если не нарушаются условия ПУЭ 1.7.83. Мы же рекомендуем класть проводку сразу с заземляющим проводником, что исключает необходимость использовать «ноль» не по назначению.

Проверьте свои знания в электрике:

Источник

Что такое фаза, ноль и земля и зачем они нужны?

Фаза – происходит от греческого слова и означает появление или этап . С курса школьной физики должны знать, что в наших розетках переменное напряжение 220 Вольт, которое изменяется 50 раз в секунду. То есть 50 раз появляется и пропадает, поэтапно меняя свой знак полярности.

В электричестве – фаза , это проводник с высоким потенциалом напряжения, который является источником напряжения и тока. На схемах как правило имеют обозначение L1, L2, L3 (так же A, B, C и международное обозначение R, S, T).

Ноль в электроснабжении — это проводник, в нормальных условиях не имеющий потенциал, применяется для отвода электроэнергии обратно в источник трансформации. На схемах обозначается как N .

Земля – защитный проводник, выполняющий отвод опасного потенциала с корпуса устройств, в случае аварии и пробое изоляции. Обозначается на схемах специальным символом и буквами PE .

Также для электроснабжения широко применяется трехфазная система. Она экономически выгодна и обоснована, с помощью поочередно меняющихся и чередующихся фаз, смещенных относительно друг друга на 120 градусов. Такая система позволяет создавать вращающееся магнитное поле в электрических двигателях, без дополнительных мер и устройств.

Читайте также:  Мы ляжем в сырую землю

Электроснабжение предприятий и домов происходит по трехфазной системе, от подстанции где высокое 6000 Вольт напряжение с помощью трансформатора понижается до 380 Вольт. Обмотка, которая понижает напряжение, подключена по схеме звезда, и точка соединения называется нейтралью .

В электроснабжении бытовых потребителей и предприятий, точку нейтраль соединяют с контуром заземления, и называется это система с глухозаземленной нейтралью . Обозначается на схеме как провод PEN (заземление и ноль). В двухпроводном электроснабжении глухозаземленная нейтраль и ноль объединены.

Из-за специфики трехфазного снабжения различают линейное и фазное напряжение . Линейное напряжение – напряжение между фазами, оно составляет 380 Вольт. Фазное напряжение – напряжение между фазами и нейтралью/нулем, должно быть около 220 Вольт.

Дома старого жилого фонда подключены к распределительным станциям по четырехпроводной схеме. Три фазы и объединенный проводник PEN . Однофазные потребители 220 Вольт подключаться поочередно в шахматном порядке. Равномерно распределяясь на трех фазах и нуле. Такая схема питания называется TN-C . Эта схема снабжения имеет недостаток, она не может обеспечить абсолютную безопасность потребителя.

При питании многоквартирных домов, во время аварии на линии, при отгорании PEN между этажами, часть сети окажется на полном напряжении 380 Вольт. И на проводник N, в месте аварии пойдет линейное напряжение. Такая система не способна защитить от поражения током, поскольку корпус прибора в этот момент может оказаться под напряжением.

Новые требования к электропитанию, предусматривают снабжение электроэнергией по 5 проводной схеме TN-C-S , три фазы, провод нейтрали и защитный проводник РЕ . В данной схеме нет таких недостатков, и защитное заземление отдельно, независимое от проводов электроснабжения.

Источник

Почему земля проводит ток и как работает заземление

Здравствуйте уважаемые подписчики и гости моего канала. Сегодня я хочу поговорить с вами о том, почему же земля проводит электрический ток, а главное почему работает заземление.

Что такое заземление и как оно работает

Итак, вы все прекрасно знаете, что заземление — это преднамеренное соединение металлических корпусов электроприборов или любой точки сети с заземляющим устройством. При этом в электротехнике благодаря заземлению обеспечивают защиту от опасного действия электрического тока путем снижения напряжения прикосновения до вполне безопасных уровней для человека.

Но возникает вполне логичный вопрос: «Так почему же земля является таким хорошим проводником?» Давайте разбираться.

За счет чего земля проводит ток

Безусловно, сама по себе земля — это не изолирующий материал, ведь в ней присутствуют различные жидкости и растворы солей, которые вполне способны проводить электрический ток.

Но такой проводник далеко не идеальный, а при этом все равно прекрасно работает и вот почему.

Бесконечно большое сечение равно нулевому сопротивлению

Давайте рассмотрим вот такую таблицу:

А теперь вспомним вот такую формулу расчета сопротивления:

Так вот, на самом деле нам абсолютно неважно какова длина и удельное сопротивление. Ведь площадь поперечного сечения земли настолько велика, что сопротивление можно считать равным нулю.

Для понимания давайте проведем сравнительный анализ, и возьмем из таблицы выше серебро и такой материал как графит.

Как вы уже поняли из таблицы, серебро гораздо лучше проводит электричество (за счет меньшего удельного сопротивления), чем графит. Но если мы увеличим площадь поперечного сечения графита в миллион раз, то уже сопротивление графита будет существенно ниже сопротивление серебра. Точно такой же эффект срабатывает и в случае с землей.

Вроде с нулевым сопротивлением земли разобрались, и, казалось бы, все просто замечательно, но есть один очень важный момент. Для того, чтобы опасный потенциал уходил именно через заземление, а не стал причиной поражения человека электрическим током, оно должно соответствовать целому ряду требований.

Читайте также:  Земли сельскохозяйственного назначения в оренбурге

Особенности заземляющего устройства

Итак, для того, чтобы заземление работало так как нужно, оно должно обладать минимальным переходным сопротивлением, а это в свою очередь достигается за счет следующих факторов:

  1. Должна быть обеспечена большая площадь контакта в местах соединения контура. То есть сварочный шов на пластинах должен быть не менее 10 см.
  2. Всю систему электродов нужно обязательно закапывать ниже линии промерзания грунта.
  3. Общее сопротивление заземляющего контура не должно превышать 4 Ом. Если при замерах специальными приборами данное условие не выполняется, тогда необходимо увеличить заземляющий контур, до достижения требуемых параметров.

Вот так заземление выполняет свою защитную функцию по причине того, что земля обладает бесконечно большим сечением. А так как ток протекает только по пути наименьшего сопротивления, то даже в случае пробоя изоляции у электроприбора, корпус которого заземлен, ничего страшного не случится, так как опасный потенциал уйдет через заземляющий контур в землю.

Понравилась статья, тогда ставим палец вверх, пишем комментарии и подписываемся. Спасибо за внимание!

Источник

Как работает и для чего нужно заземление — расставим точки над i

На вопрос «зачем нужно заземление» есть простой ответ – для защиты от удара током. Но это на бытовом языке, а что именно делает заземление с точки зрения профессионалов – каким оно должно быть , чтобы иметь право так называться?

В этой статье мы разберёмся, не углубляясь в дебри, что именно должно делать заземление и в чём разница между заземлением и занулением .

Две задачи: как работает заземление

Качественное заземление должно выполнять две задачи :

— снижать напряжение прикосновения ;

отключать участок проводки, в котором возникла утечка тока – автоматически .

Давайте разберём эти пункты подробнее .

Напряжение прикосновения это напряжение на корпусе прибора, например стиральной машины, которое там возникает, если внутри машины оголится провод и напряжение попадёт на стальную оболочку прибора. Без заземления это напряжение будет равно 220 Вольт, то есть оно будет смертельно опасным .

1.7.24. Напряжение прикосновения — напряжение между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека или животного.

Когда мы подключаем корпус прибора к заземлению, мы создаём для тока утечки путь с низким сопротивлением , а как мы знаем из курса физики, напряжение на участке цепи тем меньше, чем меньше сопротивление этого участка. Если заземление выполнено как следует, такое напряжение не превысит нескольких Вольт .

1.7.38. Защитное автоматическое отключение питания — автоматическое размыкание цепи одного или нескольких фазных проводников (и, если требуется, нулевого рабочего проводника), выполняемое в целях электробезопасности.

Автоматическое отключение неисправного участка работает двумя способами – и именно здесь возникает разница между заземлением и занулением . При занулении (система TN-S или TN-C-S), когда корпус прибора и заземляющее устройство соединяются с нулём в щитке на вводе, автоматическое выключение выполняют обычные автоматы или пробки.

А при заземлении (система ТТ), когда земля и ноль это два совершенно разных провода, автоматическое отключение выполняет УЗО и именно поэтому УЗО для «чистого» заземления это обязательное требование .

Давайте подытожим . Правильное заземление должно уводить ток утечки обратно на подстанцию, через ноль или землю – чтобы аварийные приборы не «бились током», а при сильной утечке, в результате которой может возникнуть пожар – этот участок проводки должен отключаться . Только при этих условиях можно считать, что заземление выполнено правильно и работает как следует.

Спасибо за чтение – пусть ваша провода будет безопасной, а отдельное спасибо за лайк и подписку – оставайтесь на нашем канале!

Источник